

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

GCSE MATHEMATICS

Н

Higher Tier

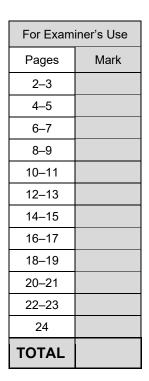
Paper 2 Calculator

Materials

For this paper you must have:

- a calculator
- mathematical instruments
- the Formulae Sheet (enclosed).

Instructions


- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

Advice

In all calculations, show clearly how you work out your answer.

Time allowed: 1 hour 30 minutes

Answer	all	questions	in	the s	naces	provided
ALISWCI	an	questions	111	uics	paccs	provided.

1	Circle	the	fraction	that	is e	egual	to	1.25%

[1 mark]

$$\frac{1}{8}$$

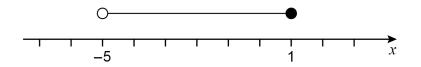
$$\frac{1}{25}$$

$$\frac{1}{80}$$

$$\frac{1}{125}$$

2 Circle the expression that means the probability of A and **not** B.

[1 mark]


$$P(A' \cap B)$$

$$P(A \cap B')$$

3 Circle the triangular number.

[1 mark]

Circle the inequality represented by the diagram. 4

[1 mark]

$$-5 < x < 1$$

$$-5 < x \le 7$$

$$-5 < x < 1$$
 $-5 < x \le 1$ $5 \le x \le 1$ $5 \le x \le 1$

$$5 \leqslant x \leqslant 1$$

5	Solve	5(2x-1)=6x+9	,

[3 ma	arks
-------	------

Do not write outside the box

	2125 can be written a			
a cul	be number multiplie	ed by a prime number be	tween 10 and 20	[2 m
		of words per minute.		
He takes 8	minutes to type a re	port of 416 words.		
		oe an essay of 1534 word	ds?	
Give your a	nswer in minutes an	id seconds.		[3 n
	Answer	minutes	seconds	
	Answer	minutes	seconds	
	Answer	minutes	seconds	
	Answer	minutes	seconds	
	Answer	minutes	seconds	

A school play takes place each day from Monday to Friday.

Here are the attendances on four of the days.

For all **five** days, the mean attendance is 90

Monday	Tuesday	Wednesday	Thursday
72	83	88	97

·	
Work out the attendance on Friday.	
	[3 marks

Answer	

Turn over for the next question

8

9	Rosie makes phone calls to try to sell broadband.
	Today, she made 120 calls.

The table shows the results.

Result of call	Frequency
Not answered	33
Answered but sale not made	81
Answered and sale made	6

9	(a)	Write down the relative frequency that a call was not answered .	[1 mark]
		Answer	
9	(b)	During the rest of the week , Rosie will make 500 calls.	
J	(5)	Using the results in the table, how many sales does she expect to make d	uring the
		rest of the week?	[2 marks]
		Answer	

10	Harry and Ellie each bought a printer and a hard drive.
	Here is some information about how much they paid.

	Printer	Hard drive
Harry	£80	£25
Ellie	10% less than Harry	20% more than Harry

Ellie says, "In total, I paid more than Harry because 20% is greater than 10%"				%"
Is she correct?				
Tick a box.				
Yes		No		
Show calculations to su	pport your answer.			[2 marks]

Do not write outside the box

l	A shape is made by joining a right-angled triangle to a rectangle.
	30 cm 16 cm Accurately
	Work out the area of the shape. [5 marks]
	Answercm ²

12	4y = 5x		Do not write outside the box
	Which statement is	correct?	
	Tick one box.	[4 mould	
		[1 mark]	
		y is 80% of x	
		<i>y</i> is 125% of <i>x</i>	
		<i>x</i> is 20% of <i>y</i>	
		<i>x</i> is 400% of <i>y</i>	
		Turn over for the next question	

Outside a cafe there is a large plastic ice cream cornet.

The cornet is a hemisphere on top of a cone.

The cone and the hemisphere each have radius 24 cm The cone has perpendicular height 117 cm

Volume of a cone =
$$\frac{1}{3} \pi r^2 h$$

r is the radius

h is the perpendicular height

Volume of a hemisphere = $\frac{2}{3} \pi r^3$

r is the radius

13 (a) Work out the total volume of the cornet.

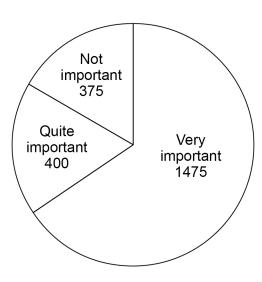
[4 marks]

Answer

____ cm³

13	(b)	The actual cornets that the cafe sells are similar to the plastic one. For the actual cornets, the cone and the hemisphere each have radius 2 cm
		How many times greater is the volume of the plastic cornet than an actual cornet? [3 marks]
		Answer

Turn over for the next question


7

A survey was held in a football stadium.

A sample of the crowd was asked about the importance of a family area.

The pie chart represents the answers.

14 (a) The total number of people in the crowd was 29 250

Answer

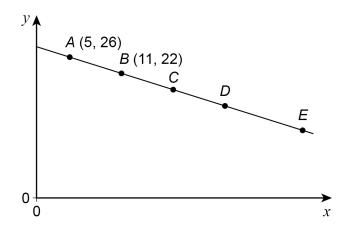
Estimate how many people in the crowd think that a family area is **very important**.

Assume that the sample is representative of the crowd.

[3 marks]

Do not write outside the box

14 (b)	In fact, 50% of the s		_				ou
	What is this likely to ma family area is very in					d who think that	
	Tick one box.					[1 mark]	
		It is larger tl	han the ansv	wer to part (a)	[
		It is the sam	ne as the an	swer to part	: (a)		
		It is lower th	nan the ansv	ver to part (a	a)		
15	In the grid, the produ c	ct of each ro	w, column a	nd diagonal	is 1		
]		
			1/4				
			4	<u>1</u> 8			
					-		
	Complete the grid.					[2 marks]	
							_


16		Amol owns a sandwich shop. The shop is open from Monday to Saturday. In June, Amol sold 3000 sandwiches.
16	(a)	Amol wants to work out the mean number of sandwiches he sold per day in June. His method is $3000 \div 30 = 100$
		Make one criticism of Amol's method. [1 mark
16	(b)	Amol received £6660 from selling the 3000 sandwiches in June. The numbers of sandwiches sold were in the ratio $meat: cheese: vegan = 9:4:7$
		The price of a meat sandwich is £2.39
		The price of a cheese sandwich is £1.89
		Work out the price of a vegan sandwich. [4 marks
		Answer £

Here is the plan of a	solid.			Do ou
Circle the solid that i	t could be.		[1 mark]	
sphere	cone	hemisphere	cylinder	
Solve $x^2 + 7x - 1$ Give your solutions a			[2 marks]	

19 A, B, C, D and E are points on a straight line.

Not drawn accurately

A, B, C and D are equally spaced.

AD : *DE* = 2 : 1

Work out the coordinates of $\boldsymbol{\mathcal{E}}$.

[3 marks]

Answer (_____ , ____)

20 A company makes and sells boxes of washing powder.

The company wants to increase the amount of money it receives **per kg** of powder.

To get the required increase it can

increase the price to £5.88

or

reduce the mass of powder in the box by x%

Work out the value of \boldsymbol{x} to 2 decimal places.	[4 marks]

21 Which of these is the equation of a circle? Circle your answer.

[1 mark]

$$x^2 - y^2 = 6$$
 $x^2 + y^2 = 6$ $y = x^2 - 6$ $y = x^2 + 6$

$$x^2 + y^2 = 6$$

$$y = x^2 - 6$$

$$y = x^2 + 6$$

Circle the reciprocal of 8⁵ 22

[1 mark]

$$-8^{5}$$

Factorise $3x^2 - 16x - 12$ 23

[2 marks]

Answer		

A straight line is perpendicular to the straight line through (2, 8) and (6, 15) and passes through (0, 9) and (x, 17) Work out the value of x. [4 ma	
and passes through $(0, 9)$ and $(x, 17)$ Work out the value of x .	box
passes through $(0, 9)$ and $(x, 17)$ Work out the value of x .	
Work out the value of x .	
	rks]
	-
	
$\chi =$	

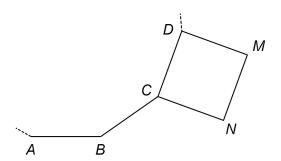
25	f(x) = 2x + 5		Do not wri outside th box
	Show that $3f(x) - 12f^{-1}(x)$ simplifies to an integer.	[4 marks]	

Do not v	vrite
outside	the
box	

26	Two objects, J and K, are applying pressure to areas of ground.
	$pressure = \frac{force}{area}$
	For J, the force is 18.9 newtons and the area is 0.45 m ²
	pressure for J : pressure for $K = 7 : 8$
	area for J : area for K = 9 : 5
	Work out the force for K.
	[4 marks]

8

22 Do not write outside the box To be rented, a bedroom must have a floor area of at least $6.51\,\mathrm{m}^2$ A bedroom has a rectangular floor. The floor measures 2.4 m by 2.9 m, each correct to 2 significant figures. Show that the bedroom can be rented. [3 marks]



27

Do not write outside the box

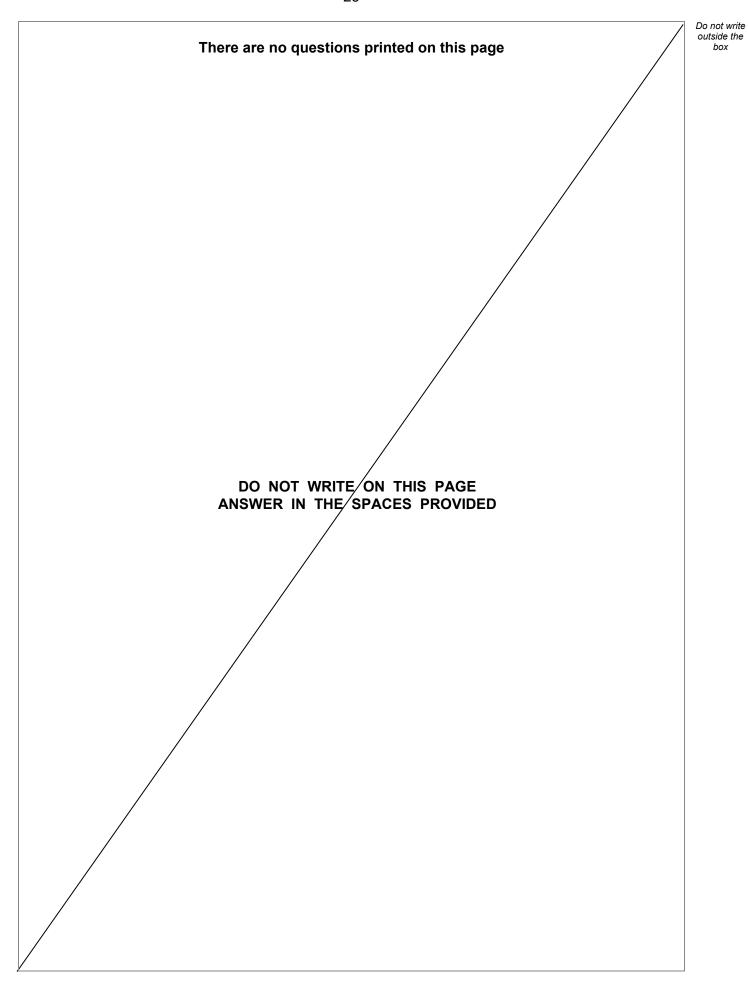
28 AB, BC and CD are sides of a regular 12-sided polygon.

CDMN is a square.

Not drawn accurately

[4 marks]

7


Do not write outside the box

29	The equation of a curve is $y = x^2 - 18x + 70$	
	By completing the square, work out the coordinates of the turning point. You must show your working. [3 mark]	s]
		_
		_
		_
	Answer (,)	

END OF QUESTIONS

3

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2022 AQA and its licensors. All rights reserved.

GCSE MATHEMATICS 8300/2H

Higher Tier Paper 2 Calculator

Mark scheme

June 2022

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comment
1	<u>1</u> 80	B1	

Q	Answer	Mark	Comment
2	$P(A \cap B')$	B1	

Q	Answer	Mark	Comment
3	15	B1	

Q	Answer	Mark	Comment
4	-5 < <i>x</i> ≤ 1	B1	

Answer		Comments		
Alternative method 1				
10 <i>x</i> – 5	M1	may be seen in a grid		
their $10x - 6x = 9 + \text{their } 5$		oe eg their $-5 - 9 = 6x$ – their $10x$		
or		or $4x - 14 = 0$		
4x = 14	M1	collecting two terms in x and two		
or		constant terms correctly		
14 ÷ 4 or 7 ÷ 2				
$\frac{14}{14}$ or $\frac{2}{3}$ or $\frac{7}{3}$ or $\frac{3}{3}$	Λ 1 [1	oe		
4 4 2 2 2	AIII	ft M1M0 or M0M1 with exactly one error		
Alternative method 2				
$\frac{6x}{5} + \frac{9}{5}$	M1	oe two terms eg $1.2x + 1.8$		
		_		
$2x - \text{their } \frac{6x}{5} = \text{their } \frac{9}{5} + 1$		oe eg -1 – their $\frac{9}{5}$ = their $\frac{6x}{5}$ – $2x$		
or $\frac{4x}{5} = \frac{14}{5}$	M1	or $\frac{4x}{5} - \frac{14}{5} = 0$		
		collecting two terms in x and two constant terms correctly		
$\frac{14}{4}$ or $3\frac{2}{4}$ or $\frac{7}{2}$ or $3\frac{1}{2}$ or 3.5	A1ft	oe ft M1M0 or M0M1 with exactly one error		
	Alternative method 1 $10x - 5$ their $10x - 6x = 9 + \text{their } 5$ or $4x = 14$ or $14 \div 4$ or $7 \div 2$ Alternative method 2 $\frac{6x}{5} + \frac{9}{5}$ $2x - \text{their } \frac{6x}{5} = \text{their } \frac{9}{5} + 1$ or $\frac{4x}{5} = \frac{14}{5}$	Alternative method 1 $10x - 5$ their $10x - 6x = 9 + \text{their } 5$ or $4x = 14$ or $14 \div 4 \text{ or } 7 \div 2$ Alternative method 2 $\frac{6x}{5} + \frac{9}{5}$ M1 $2x - \text{their } \frac{6x}{5} = \text{their } \frac{9}{5} + 1$ or $\frac{4x}{5} = \frac{14}{5}$ M1 M1 M1 M1 M1 M1 M1		

Additional Guidance is on the next page

	Additional Guidance			
	Ignore simplification or conversion if correct answer seen			
	Correct answer from trial and improvement	M1M1A1		
	Correct equation with terms collected or division with no or incorrect answer	M1M1A0		
	Embedded 3.5 with no or incorrect answer	M1M1A0		
	10x - 5 = 6x + 9	M1		
	10x - 6x = 9 - 5	MO		
	x = 1 (exactly one error in line 2)	A1ft		
	7x - 5 = 6x + 9	MO		
	7x - 6x = 9 + 5	M1		
	x = 14 (exactly one error in line 1)	A1ft		
	10x - 5 = 6x + 9	M1		
	10x + 6x = 9 - 5	MO		
5 cont	$x = \frac{4}{16}$ (two errors in line 2)	A0ft		
	10x - 1 = 6x + 9	MO		
	10x - 6x = 9 + 1	M1		
	x = 3 (exactly one error in line 1 but answer does not ft)	A0ft		
	7x - 6 = 6x + 9	МО		
	7x - 6x = 9 + 6	M1		
	x = 15 (two errors in line 1)	A0ft		
	10x + 4 = 6x + 9	MO		
	10x - 6x = 9 + 4	MO		
	x = 3.25 (neither M mark scored)	A0ft		
	10x - 5 = 30x + 45	M1M0A0ft		
	Any ft answer must be rounded or truncated to 1 dp or better			
	The last two marks can be implied without the collection of terms seen			
	eg $10x - 1 = 6x + 9$ and $x = 2.5$	M0M1A1ft		
	Collecting terms before the bracket has been expanded	M0M0A0ft		

Q	Answer	Mark	Comments		
	125 and 17		together in any order	any order	
	or 5 ³ and 17		eg 125×17 or 17×5^3 or 5, 5, 5, 17		
	or 5 and 5 and 5 and 17		5 ÷ 125 = 17		
			B1 at least three of 8, 27, 6 343, 512, 729, 1000, 1331, 6 etc (allow 2 ³ , 3 ³ , 4 ³ etc)		
			or		
		B2	all four of 11, 13, 17, 19 (ignore any numbers not between 10 and 20)		
			or		
			(cube number > 1) × (prime between 10 and 20)	number	
			or		
			2125 ÷ (cube number > 1)		
			or		
			2125 ÷ (prime number between 20)	een 10 and	
	Additional Guidance				
6	B1 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts				
	B2 responses may be seen on a factor tree				
	B1 for three cube numbers given in index form – evaluations can be ignored				
	eg 4 ³ 5 ³ 6 ³ scores B1 with no evalu	eg 4 ³ 5 ³ 6 ³ scores B1 with no evaluations or with incorrect evaluations			
	B1 for multiplications or divisions – evaluation can be ignored				
	eg1 2 ³ × 13 scores B1 with no evaluation or evaluated incorrectly				
	eg2 2125 ÷ 27 scores B1 with no evaluation or evaluated incorrectly eg3 2125 ÷ 11 scores B1 with no evaluation or evaluated incorrectly 125 and 17 seen in multiple attempts is B2 if 2125 included eg 125 × 17 = 2125 or 2125 ÷ 17 = 125 or 2125 ÷ 125 = 17 seen amongst multiple attempts 125 and 17 seen in multiple attempts is B1 if 2125 not included eg 125 × 17 seen amongst multiple attempts 11 13 15 17 19 does not score B1 unless 11 13 17 19 selected				
				B2	
				B1	
	Incomplete list eg 11 13 19 does no	ot score B	1		
-					

Q	Answer	Mark	Comments	
	Alternative method 1 Words per minute or words per second			
	416 ÷ 8 or 52	M1	oe eg 416 ÷ (8×60) or 416 ÷ 480 or $\frac{13}{15}$ or $[0.86, 0.87]$ or 0.9	
	1534 ÷ their 52 or (1534 – 416) ÷ their 52 + 8 or 29.5	M1dep	oe eg 1534 ÷ their [0.86, 0.87] or (1534 – 416) ÷ their [0.86, 0.87] + 8 × 60 or 1770	
	29 minutes 30 seconds	A1	SC2 29 minutes 50 seconds or 29 minutes 5 seconds	
7	Alternative method 2 Minutes per	r word or s	seconds per word	
	$8 \div 416$ or $\frac{1}{52}$ or [0.019, 0.019231] or 0.02	M1	oe eg 8 × 60 ÷ 416 or 480 ÷ 416 or $\frac{15}{13}$ or [1.15, 1.154] or 1.2	
	1534 × their [0.019, 0.019231] or (1534 – 416) × their [0.019, 0.019231] + 8 or 29.5	M1dep	oe eg 1534 × their [1.15, 1.154] or (1534 – 416) × their [1.15, 1.154] + 8 × 60 or 1770	
	29 minutes 30 seconds	A1	SC2 29 minutes 50 seconds or 29 minutes 5 seconds	

Mark scheme and Additional Guidance continue on the next page

	Alternative method 3 Essay word	ls ÷ report	words	Alternative method 3 Essay words ÷ report words		
7 cont	1534 ÷ 416 or $\frac{59}{16}$ or [3.68, 3.69] or 3.7 or (1534 – 416) ÷ 416 or [2.68, 2.69] or 2.7	M1	oe			
	8 × their [3.68, 3.69] or 8 × their [2.68, 2.69] + 8 or 29.5	M1dep	oe eg 8 × 60 × their [3.68, 3 or $8 \times 60 \times \text{their}$ [2.68, 2.69] + or 1770	-		
	29 minutes 30 seconds	A1	SC2 29 minutes 50 second or 29 minutes 5 seconds	s		
	Additional Guidance					
	M1 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts					
	Answer 29.5 minutes 1770 seconds			M1M1A0		
	Build-up method must be a fully correct method that would lead to 29.5					
	If working with report words ÷ essay	words app	bly the principles of Alt 3			

Q	Answer	Mark	Comments		
	Alternative method 1				
	$90 \times 5 \text{ or } 450$ or $\frac{72 + 83 + 88 + 97 + x}{5}$	M1	oe any letter or symbol		
	5 $90 \times 5 - 72 - 83 - 88 - 97$ or $90 \times 5 - 340$ or $72 + 83 + 88 + 97 + x = 90 \times 5$ or $340 + x = 90 \times 5$	M1dep	oe any letter or symbol equations must have fraction eliminated		
	110	A1			
8	Alternative method 2				
	Trial of any value with mean correctly evaluated		also allow if given to the next or previous integer		
		M1	eg1 trial of 100 $\frac{72+83+88+97+100}{5} = 88$ eg2 trial of 78		
			$\frac{340+78}{5} = 83 \text{ (or 84 or 83.6)}$ ignore trials with mean not evaluated or incorrectly evaluated		
	Trial of 110 with mean evaluated to 90	M1dep	eg $\frac{72+83+88+97+110}{5}$ = 90 this mark implies M1M1		
	110	A1			

Mark scheme and Additional Guidance continue on the next page

	Alternative method 3				
	$\frac{72+83+88+97}{4}$ or $\frac{340}{4}$ or 85	M1	oe		
	their $85 + 5 \times (90 - \text{their } 85)$ or their $85 + 5 \times 5$ or their $85 + 25$	M1dep	oe 90 + 4 × (90 – their 85)		
	110	A1			
	Alternative method 4				
	$\frac{72+83+88+97}{5}$ or $\frac{340}{5}$ or 68	M1	oe		
	5 × (90 – their 68) or 5 × 22	M1dep	oe		
	110	A1			
8	Alternative method 5				
cont	(90-72) + (90-83) + (90-88) + $(90-97)$ or 18+7+2-7 or 20	M1	oe eg $(72-90) + (83-90)$ + $(97-90)$ or $90 \times 4 - 72 - 83 - 88 - 9$ or $-18 - 7 - 2 + 7$ or -20	,	
		Madon			
	90 + their 20 110	M1dep A1	oe eg 90 – their –20		
	Additional Guidance				
	M1 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts				
	Embedded 110 scores M1M1A0 using Alt 2 (even if a different answer is given)				
	Condone eg Alt 3 72 + 83 + 88 + 97 ÷ 4			M1	
	No further marks unless recovered				
	Alt 5 1st M1 Subtractions must be consistent				
	Condone 110% for 110				

Q	Answer	Mark	Comments		
	$\frac{33}{120}$ or $\frac{11}{40}$ or 0.275 or 27.5%	oe fraction, decimal or percentage	or percentage		
	Ad	ditional C	Guidance		
	Correct answer seen with an answer	of 33	В0)	
	Ignore simplification or conversion if	correct ar	swer seen		
	eg1 $\frac{33}{120}$ seen Answer $\frac{3}{10}$		B1		
	eg2 0.275 seen Answer 0.28		B1		
	eg3 $\frac{11}{40}$ seen Answer 27.5 Ignore words if correct answer seen				
9(a)	eg1 $\frac{33}{120}$ seen Answer 11 out of 40	B1			
	eg2 $\frac{33}{120}$, unlikely		B1		
	Answer given as ratio (even if correct	also seen)			
	eg 33:120		В0)	
	Answer only in words eg 33 out of 120				
	Only 27.5 (without %)	Only 27.5 (without %)			
	Only 27% or 28%)	
	Only 0.27 or 0.28)	
	Only $\frac{1.1}{4}$		В0)	

Q	Answer	Mark	Comments	
	$\frac{6}{120} \times 500$ or $[4.16, 4.17] \times 6$ or $[24.96, 25.02]$ or 4.2×6 or 25.2 or $25:500$ or $\frac{25}{500}$	M1	oe eg 0.05 × 500 or 500 ÷	20
	25	A1		
	Additional Guidance			
	Working and value may be seen by ta	able		
9(b)	24 + 1, Answer 25	M1A1		
	480 = 24, Answer 25	M1A1		
	Embedded but not selected as answer eg 137.5 + 337.5 + 25 = 500			M1A0
	Working for Not answered or Answered but sale not made is not choice eg ignore 137.5 and 337.5 seen 25 followed by answer 19 If rounded or truncated values are used, the final answer must be exactly 25			
	eg1 500 ÷ 120 = 4.16, 4.16 × 6 Answer 25 (may have kept full v	alue on c	alculator)	M1 A1
	eg2 500 ÷ 120 = 4.16, 4.16 × 6 = 24 Answer 25 (comes from further			M1 A0

Q	Answer	Mark	Comments		
	80 × 0.9 or 72 or 25 × 1.2 or 30 or 80 × 0.1 and 25 × 0.2 or 8 and 5 or	M1	oe eg $80 \times (1 - 0.1)$ or $25 + 25 \times 0.2$ or $25 + 5$ implied by 102 or 3 or -3		
	−8 and 5				
	No and correct valid amount(s)	A1	eg no and 105 and 102 or no and 3 or no and -3 or no and 8 and 5 or no and -8 and 5		
10	Additional Guidance				
	If neither box is ticked, No may be implied eg neither box is ticked and Ellie paid 3 less			M1A1	
	Working and values may be seen by the table				
	No and 105 with M1 not seen			M0A0	
	No and 8 with M1 not seen			M0A0	
	No and 5 with M1 not seen			M0A0	
	Condone No and 8 and 5 with arithmetic error(s) seen eg 72 so 8 less 30 so 5 more 105 and 103 No (arithmetic error in calculating Ellie's total)			M1A1	
	Do not condone No and 8 and 5 with process error(s) seen eg $80-8=72$ $25-5=20$ (process error, should be $25+5$) 105 and 92 No			M1A0	

Q	Answer	Mark	Comments	
	Alternative method 1			
	16^2 or 256 and 30^2 or 900	M1	oe implied by 1156	
	$\sqrt{16^2 + 30^2}$ or $\sqrt{256 + 900}$ or $\sqrt{1156}$ or 34	M1dep	oe eg $\sqrt{16^2 + 30^2 - 2 \times 16 \times 30 \times \cos 90}$	
	52 × their 34 or 1768	M1dep	oe if M1M0 their 34 can be any value other than 16, 30 or 52 dep on 1st M	
	0.5 × 30 × 16 or 240	M1	oe eg 0.5 × 30 × 16 × sin 90	
	2008	A1	SC3 2248	
11	Alternative method 2			
	$\tan^{-1}\frac{16}{30}$ or [28, 28.1] or $\tan^{-1}\frac{30}{16}$ or [61.9, 62]	M1	oe may be on diagram	
	$\frac{30}{\cos(\text{their } [28, 28.1])}$ or $\frac{16}{\cos(\text{their } [61.9, 62])}$ or 34	M1dep	oe eg $\frac{16}{\sin(\text{their}[28, 28.1])}$ or $30\cos(\text{their}[28, 28.1]) + 16\cos(\text{their}[61.9, 62])$	
	52 × their 34 or 1768	M1dep	oe if M1M0 their 34 can be any value other than 16, 30 or 52 dep on 1st M	
	0.5 × 30 × 16 or 240	M1	oe eg 0.5 × 30 × 16 × sin 90	
	2008	A1	SC3 2248	

	Additional Guidance				
	Up to M4 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts				
11	The 4th mark in Alts 1 and 2 is not dependent on any other marks				
cont	34 or 1768 or 240 may be on the diagram				
	SC3 is for using 30 × 16 for the area of the triangle				
	Ignore units				

Q	Answer	Mark	Comments
12	<i>y</i> is 125% of <i>x</i>	B1	

Q	Answer	Mark	Comments	
	$\frac{1}{3} \times \pi \times 24^2 \times 117$ or $\frac{2}{3} \times \pi \times 24^3$	M1	oe eg $\frac{1}{3}\pi \times 576 \times 117$ or $\frac{2}{3}\pi \times 13824$	
	22464π or [70536, 70582] or 9216π or [28938, 28957]	A1	may be seen in a sum implied by final A1	
	$\frac{1}{3} \times \pi \times 24^{2} \times 117 + \frac{2}{3} \times \pi \times 24^{3}$ or $22464\pi + 9216\pi$ or $[70536, 70582] + [28938, 28957]$	M1dep	oe	
	31 680π or [99 474, 99 539]	A1		
	Additional Guidance			
13(a)	π may be seen as any value in the interval [3.14, 3.142]			
	Do not allow any misreads of formulae unless recovered $eg \ \pi \times 24^2 \times 117 \ and \ \frac{2}{3} \times \pi \times 24^2$			МО
	Allow dots for multiplication			
	For A marks allow eg 22464 \times π or π \times 31680			
	31 680π followed by incorrect evaluation attempt			M1A1M1A1
	31 680π followed by further work			M1A1M1A0
	31 680 only			M0A0M0A0
	$\frac{1}{3} \times \pi \times 24^2 \times 117 = 4725 \qquad \frac{2}{3} \times \pi \times 24^3 = 28952$			M1A1 M1
	4725 + 28 952 (even though 4725 is wrong the meth	nod for $\frac{1}{3}$	\times π \times 24 ² \times 117 is seen)	

Q	Answer	Mark	Comments	
	Alternative method 1 Uses volum	ie scale fa	octor	
	24 ÷ 2 or 12	M1	oe eg 12 × 2 = 24	
	(their 12) ³	M1dep	oe eg $24^3 \div 2^3$ or $13824 \div 8$	
	1728	A1	condone 1 : 1728 or 1728 : 1 SC2 $\frac{1}{1728}$	
	Alternative method 2 Compares volumes of cornets (ie compares total volu			
13(b)	24 ÷ 2 or 12	M1	oe eg 12 × 2 = 24 may be implied eg (height of cone) 9.75 or (volume of cone) 13π or (volume of cone) [40.8, 40.85] or (total volume) $\frac{55}{3}\pi$ or [57.4, 57.7]	
	their (a) ÷ $ (\frac{1}{3}\pi \times 2^2 \times \frac{117}{\text{their } 12} + \frac{2}{3}\pi \times 2^3) $	M1dep	oe eg their (a) ÷ [57.4, 57.7]	
	1728	A1	condone 1 : 1728 or 1728 : 1 SC2 $\frac{1}{1728}$	

Mark scheme and Additional Guidance continue on the next two pages

	Alternative method 3 Compares volumes of cones			
	24 ÷ 2 or 12	M1	oe eg 12 × 2 = 24 may be implied eg (height of cone) 9.75 or (volume of cone) 13π or (volume of cone) [40.8, 40.85] or (total volume) $\frac{55}{3}\pi$ or [57.4, 57.7]	
13(b)	their volume of cone from (a) $\div (\frac{1}{3}\pi \times 2^2 \times \frac{117}{\text{their } 12})$	M1dep	oe eg their volume of cone from (a) ÷ [40.8, 40.85]	
cont	1728	A1	condone 1 : 1728 or 1728 : 1 SC2 $\frac{1}{1728}$	
	Alternative method 4 Compares volumes of hemispheres			
	their volume of hemisphere from (a) $\div (\frac{2}{3}\pi \times 2^3)$	M2	oe eg their volume of hemisphere from (a) ÷ [16.7, 16.8]	
	1728	A1	condone 1 : 1728 or 1728 : 1 SC2 $\frac{1}{1728}$	

	Additional Guidance	
	π may be seen as any value in the interval [3.14, 3.142]	
	Answer ×1728 or 1728×	M1M1A1
	Answer 12	M1M0A0
	Answer 12 ³ with 1728 seen	M1M1A1
	Answer 12 ³ without 1728 seen	M1M1A0
	Alts 2, 3 and 4 Allow if an incorrect volume formula from (a) is used in (b) eg Alt 4 (a) $\frac{1}{2} \times \frac{2}{3} \times \pi \times 24^3 = 4608\pi$	
13(b)	(b) $\frac{1}{2} \times \frac{2}{3} \times \pi \times 2^3 = \frac{8}{3}\pi$	
cont	$4608\pi \div \frac{8}{3}\pi$	M2
	1728	A1
	Alts 2 and 3 Allow $\frac{55}{3}$ rounded to 1dp or better eg allow 18.3	
	Alt 4 Allow $\frac{16}{3}$ rounded to 1dp or better eg allow 5.3	
	Alts 2 and 3 2nd M1 – allow consistent omission of π	
	Alt 4 M2 – allow consistent omission of π	
	Alts 2, 3 and 4 Answer 1728 is M1M1A1 unless it comes from rounding or truncating	
	eg1 Alt 2 99 525.655 ÷ 57.595 = 1728	M1M1A1
	eg2 Alt 2 99 525.655 ÷ 57.595 = 1728.03 Answer 1728	M1M1A0

Q	Answer	Mark	Comments		
	Alternative method 1				
	375 + 400 + 1475 or 2250 or 13 seen or $\frac{59}{90}$ seen or [0.65, 0.66] seen $\frac{1475}{375 + 400 + 1475} \times 29250$	M1	oe for 375 allow 350 or 370 or 3 for 1475 allow 1450 or 1470 or 1500 eg 400 + 400 + 1500 any estimated values must be eg only seeing 2300 is M0 oe	or 1480 be seen	
	or 1475 × 13 or [0.65, 0.66] × 29 250 or [19012.5, 19305]	M1dep	for 375 allow 350 or 370 or 3 for 1475 allow 1450 or 1470 or 1500 for 29 250 allow 29 000 or 29 or 29 300 or 29 500 or 30 000	or 1480 9200	
	19175	A1			
14(a)	Alternative method 2				
	[234, 238]	M1	may be on the diagram		
	$\frac{\text{their } [234, 238]}{360} \times 29250$ or their [234, 238] × 81.25	M1dep	oe for 29250 allow 29000 or 29200 or 29300 or 29500 or 30000		
	19175	A1			
	Additional Guidance				
	375 + 400 + 1475 = 2250 If they subsequently estimate 2250 n	narks can be scored	M1		
	Answer 19175 is M1M1A1 unless it comes from rounding or truncating eg1 Alt 1 0.65555 × 29250 = 19175 eg2 Alt 1 0.65555 × 29250 = 19174.8 Answer 19175			M1M1A1 M1M1A0	
	Alt 2 if their angle is outside the range [234, 238]			M0M0A0	

Q	Answer	Mark	Comment
14(b)	It is lower than the answer to part (a)	B1	

Q		Answer		Mark	Comme	nt
	8 1/16 2	1 1	1/2 16 1/8	B2	oe values eg 0.0625 for condone unprocessed v eg for 8 allow $\frac{16}{2}$ or $\frac{8}{1}$ B1 at least three of the columns and diagonals product of 1 do not count rows, columns and count rows are considered and count rows.	alues eight rows, have a nns or diagonals
			Ad	ditional G	Buidance	
	If decimal	values are us	ed they must	be exact		
	The given	values in the	grid cannot b	e change	d	
15	B1 can be	awarded with	an incomple	ete grid eg	J	
	8	$\frac{1}{4}$				
	1 16	1				B1
	2	4	1 8			
	1	1/4	1			
	1	1	1/2		roducts of 1 but two are nted as they only have	ВО
	1	4	1/8			

Q	Answer	Mark	Comments		
	Valid criticism of method indicating or implying that 30 is incorrect	B1	eg the shop was open for fewer than 30 days		
	Ad	ditional G	Guidance		
	Valid criticism with non-contradictory	statemen	ts	B1	
	Contradictory statements			В0	
	30 should be 26			B1	
	The answer is 115 (allow 116 or 115	.4 or 115.	38)	B1	
	30 should be 25			B1	
	The answer is 120			B1	
	30 should be 24 (condone)	B1			
	The answer is 125 (condone)	B1			
16(a)	The answer is more than 100	B1			
	The shop wasn't open for 30 days				
	He didn't work every day in June				
	The shop was shut on Sundays	B1			
	He is open 6 days a week	B1			
	The shop isn't open every day			B1	
	He should divide by 31	В0			
	He doesn't work weekends	В0			
	There aren't 30 days in June	В0			
	Not every month has 30 days	В0			
	30 should be 27			В0	
	The answer is less than 100			В0	

Q	Answer	Mark	Comments
	Alternative method 1		
	3000 ÷ (9 + 4 + 7) or 3000 ÷ 20 or 150	M1	oe implied by 1350 or 600 or 1050 or 358.5(0) or 283.5(0)
16(b)	9 × 2.39 or 21.51 or 4 × 1.89 or 7.56 or 29.07	M1	oe may be embedded or implied eg $9 \times 2.39 \times$ their 150 or $4 \times 1.89 \times$ their 150 their 150 can be any number 3226.5(0) or 1134 or 4360.5(0) score M1M1
	$(6660 - 9 \times 2.39 \times \text{their } 150 - 4 \times 1.89 \times \text{their } 150) \div (7 \times \text{their } 150)$ or $(6660 - 3226.5(0) - 1134) \div 1050$ or $(6660 - 4360.5(0)) \div 1050$ or $2299.5(0) \div 1050$	M1dep	oe eg $(6660 - 9 \times 2.39 \times \text{their } 150 - 4 \times 1.89 \times \text{their } 150) \div (3000 - 9 \times \text{their } 150 - 4 \times \text{their } 150)$ or $\frac{219}{100}$ dep on M1M1 their 150 must be from 1st M1
	2.19	A1	

Mark scheme and Additional Guidance continue on the next page

	Alternative method 2			
	3000 ÷ (9 + 4 + 7) or 3000 ÷ 20 or 150	M1	oe implied by 1350 or 600 or 1050 or 358.5(0) or 283.5(0)	
	9 × 2.39 or 21.51 or 4 × 1.89 or 7.56 or 29.07	M1	oe may be embedded or implied eg $9 \times 2.39 \times$ their 150 or $4 \times 1.89 \times$ their 150 their 150 can be any number 3226.5(0) or 1134 or 4360.5(0) score M1M1	
16(b) cont	$\left(\frac{6660}{\text{their }150} - 9 \times 2.39 - 4 \times 1.89\right) \div 7$ or $(44.4(0) - 21.51 - 7.56) \div 7$ or $15.33 \div 7$	M1dep	oe eg $(44.4(0) - 29.07) \div 7$ or $\frac{219}{100}$ dep on M1M1 their 150 must be from 1st M1	
	2.19	A1		
	Additional Guidance			
	Up to M1M1 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts			

Q	1	Answer	Mark	Comment
17	7	cylinder	B1	

Q	Answer	Mark	Comments		
	$\frac{-7 \pm \sqrt{7^2 - 4 \times 1 \times -11}}{2 \times 1}$ or $-\frac{7}{2} \pm \sqrt{\left(\frac{7}{2}\right)^2 + 11}$	M1	oe eg $\frac{-7 \pm \sqrt{49 + 44}}{2}$ or $\frac{-7 \pm \sqrt{93}}{2}$ or $-\frac{7}{2} \pm \sqrt{\frac{49}{4} + 11}$ or $-\frac{7}{2} \pm \sqrt{\frac{93}{4}}$		
	1.3(2) and -8.3(2)	A1			
	Ad	ditional G	Buidance		
	$-3.5 \pm \sqrt{12.25 + 11}$ or $-3.5 \pm \sqrt{23.2}$:5	M1		
	For M1 allow solutions given separately eg $\frac{-7+\sqrt{93}}{2}$ and $\frac{-7-\sqrt{93}}{2}$				
18	Both solutions correct	M1A1			
	One solution correct does not imply M1				
	Not using ± is M0 unless recovered				
	eg1 $\frac{-7 + \sqrt{7^2 - 4 \times 1 \times -11}}{2 \times 1}$ followed	MOAO			
	eg2 $\frac{-7 + \sqrt{7^2 - 4 \times 1 \times -11}}{2 \times 1}$ followed by 1.3 and -8.3 M A short dividing line or a short square root symbol is M0 unless recovered eg by a correct solution				
	Condone if their square root symbol i	s above a	ny part of –11		
	$\sqrt{(7^2-4\times1\times-11)}$ is correct for $\sqrt{7^2}$	-4×1×-	11		
	Both decimal solutions seen in working	ng but onl	y one on answer line M1A0		

Q	Answer	Mark	Comments		
	(32, 8)	B2 $E(32,)$ or $E(, 8)$ B1 $C(17, 18)$ or $D(23, 14)$ SC1 $C(a, b)$ and $D(a + 6, b - 4)$			
	Add	ditional G	Guidance		
	Mark the answer line for B3 and B2 (idagram)	neck working lines and			
	B1 or SC1 is likely to be seen in working lines or on the diagram				
19	Condone missing brackets eg C 17, 18			B1	
	Coordinates can be implied eg D $x = 23$ $y = 14$				
	Condone answers given as vectors for B2, B1 or SC1				
	$\operatorname{eg} C \begin{pmatrix} 17 \\ 18 \end{pmatrix}$				
	SC1 C cannot be (5, 26) or (11, 22) and coordinates of <i>D</i> must be evaluated				
	eg C (15, 17) and D (21, 13)			SC1	

Q	Answer	Mark	Comments
	Alternative method 1		
	5.88 ÷ 1.68 or 3.5 or 1.68 ÷ 5.88 or [0.285, 0.29] or 5.88 ÷ 5.60 or 1.05	M1	oe eg $\frac{7}{2}$ or $\frac{2}{7}$ or $\frac{21}{20}$ or $5.6 \times 1.05 = 5.88$
	$5.6(0) \div (5.88 \div 1.68)$ or $5.6(0) \times (1.68 \div 5.88)$ or $1.68 \div (5.88 \div 5.60)$ or 1.6	M1dep	oe eg 5.6(0) ÷ 3.5 or 5.6(0) × [0.285, 0.29] or 1.68 ÷ 1.05
20	their 1.6 ÷ 1.68 or [0.952, 0.9524] or 1 – their 1.6 ÷ 1.68 or 1 – [0.952, 0.9524] or [0.0476, 0.048]	M1dep	oe eg $\frac{20}{21}$ or $1 - \frac{20}{21}$ or $\frac{1}{21}$ 5.6(0) ÷ 5.88 oe scores M3 1 – 5.6(0) ÷ 5.88 oe scores M3
	Alternative method 2	AI	
	5.88 ÷ 5.6(0) or 1.05	M1	oe eg $\frac{21}{20}$
	1 ÷ their 1.05	M1dep	oe eg 1 ÷ $\frac{21}{20}$
	[0.952, 0.9524] or 1 – [0.952, 0.9524] or [0.0476, 0.048]	M1dep	oe eg $\frac{20}{21}$ or $1 - \frac{20}{21}$ or $\frac{1}{21}$ 5.6(0) ÷ 5.88 oe scores M3 1 - 5.6(0) ÷ 5.88 oe scores M3
	4.76	A1	

	Additional Guidance				
	Up to M3 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts				
	$\frac{0.28}{5.60} = 0.05 \text{ is M0 unless 1.05 subsequently used}$				
	5.60 ÷ 1.68 with no further correct working	MO			
	Note that 1.6 seen may be from an incorrect method				
	eg $1.68 \times 0.95 = 1.6$ does not score because 1.68×0.95 is an incorrect method and the actual value of 1.68×0.95 is 1.596				
	Any single calculation or set of calculations that lead to $\frac{20}{21}$ or $\frac{1}{21}$				
20 cont	Some common oes for $1 - 5.6(0) \div 5.88$ are $\frac{5.88 - 5.6(0)}{5.88} \text{or} \frac{0.28}{5.88} \text{and} \frac{1.68 - 1.6}{1.68} \text{or} \frac{0.08}{1.68}$	M3			
	3rd M1 oes include				
	[0.952, 0.9524] × 100 or [95.2, 95.24]%				
	100% – [0.952, 0.9524] × 100				
	[0.0476, 0.048] × 100 or (4.76, 4.8]%				
	Values that score marks may be seen in ratios				
	eg 5.88 : 1.68 (does not score at this stage) 3.50 : 1	M1			
		M1			
	Allow working in pence eg 588 ÷ 1.68 or 350				
	Allow working in grams eg 5.88 ÷ 1680 or 0.0035	M1			

Q	Answer	Mark	Comment
21	$x^2 + y^2 = 6$	B1	

Q	Answer	Mark	Comment
22	8 ⁻⁵	B1	

Q	Answer	Mark	Comments	
	(3x+2)(x-6)	B1 $(3x + a)(x + b)$ where $ab = -12$ or $a + 3b = a$ a and b must be integers SC1 $(-3x - 2)(6 - x)$		
	Ade	ditional C	Guidance	
	Brackets in either order for B2 and B	1 and SC	1	
	(3x+6)(x-2)			B1
	(3x+4)(x-3) or $(3x+3)(x-4)$ or $(3x-3)(x+4)$ or $(x+3)(3x-4)$			B1
	(3x + 12)(x - 1) or $(x - 12)(3x + 1)$			B1
	Some B1 responses may be implied			
23	eg $3(x + 4)(x - 1)$ implies $(3x + 12)(x - 1)$			
	Do not allow answers involving fractions eg $3(x-6)(x+\frac{2}{3})$			
	Some examples of B1 with $a + 3b = -16$			
	(3x+5)(x-7) $(3x+8)(x-8)$ (3	3x - 1)(x - 1)	(3x-7)(x-3)	
	(2+3x) is equivalent to $(3x+2)$ etc			
	Condone use of multiplication signs in B2 or B1 responses			
	eg $(3x + 2) \times (x - 6)$			B2
	Condone missing closing bracket in B2 or B1 responses eg $(3x + 6)(x - 2)$			B1
	Ignore any attempt to 'solve' after B2 or B1 seen			

Q	Answer	Mark	Comments
	$\frac{15-8}{6-2}$ or $\frac{7}{4}$	M1	oe eg $\frac{8-15}{2-6}$ or 1.75 may be embedded in an attempt at equation of line eg $y = \frac{7}{4}x$ may be implied
24	$-1 \div \text{their } \frac{7}{4} \text{ or } -\frac{4}{7}$ or $\frac{17-9}{x-0} \times \text{their } \frac{7}{4} = -1$	M1	oe allow [-0.57143 , -0.57] may be embedded in an attempt at equation of a line eg $y = \text{their} -\frac{4}{7}x \dots$
	$17 - 9 = \text{their} - \frac{4}{7}x$ or $-4x = 56$ or $56 \div -4$	M1dep	oe equation must be of the form $ax = b$ (b can be unprocessed) dep on 2nd M1
	-14	A1	

	Additional Guidance						
	The second mark is not dependent on the first – see examples below						
	(gradient of line through given points =) $\frac{6-2}{15-8} = \frac{4}{7}$	МО					
	(gradient of perpendicular line =) $-\frac{7}{4}$	M1					
	$17 - 9 = -\frac{7}{4}x$	M1					
	(gradient of line through given points =) $-\frac{7}{4}$	MO					
24	$\frac{17-9}{x} \times -\frac{7}{4} = -1$						
cont	-56 = -4x	M1					
	(gradient of line through given points =) $\frac{7}{4}$	M1					
	(gradient of perpendicular line =) $\frac{4}{7}$	МОМО					
	Condone use of letters for gradients eg $x = 1.75$	M1					
	For the first two marks, condone inclusion of x in their gradients						
	Answer –14 that comes from rounding or truncating cannot score A1						
	eg1 (perp grad =) -0.57 8 = $-0.57x$ Answer -14	M3A1					
	eg2 (perp grad =) -0.57 8 = -0.57x = -14.03 Answer -14	М3А0					

Q	Answer	Mark	Comments		
	x = 2y + 5 or $x - 5 = 2yor y - 5 = 2x or \frac{y - 5}{2}$	M1	oe eg $x = 2f^{-1} + 5$ or $f(x) - 5 = 2x$		
	<u>x-5</u> 2	A1	oe eg $\frac{x}{2} - \frac{5}{2}$ may be implied eg by $12f^{-1}(x)$ implied by $\frac{y-5}{2}$ if $\frac{x-5}{2}$ us subsequent working	, , ,	
25	Correctly expands $3(2x + 5) - 12 \times \text{their } \frac{x - 5}{2}$ to a linear expression	M1	6x + 15 - 6x + 30 if M1A1 their $\frac{x-5}{2}$ must be a function their $\frac{x-5}{2}$ cannot be $2x + 5$ implied by a correct linear expectation $3(2x + 5) - 12 \times \text{their } \frac{x-5}{2}$		
23	$\frac{x-5}{2}$ and 45	A1			
	Additional Guidance				
	45 with no working			Zero	
	45 from wrong working does not score 4 marks – mark the working seen				
	First A1 Condone $y = \frac{x-5}{2}$ or $f = \frac{x-5}{2}$ or $f(x) = \frac{x-5}{2}$ or $x = \frac{x-5}{2}$				
	For $6x + 15 - 6x + 30$ allow $\frac{12x + 30 - 12x + 60}{2}$ but not $6x + 15 - \frac{12x - 60}{2}$				
	$x = 2y + 5 \qquad \frac{x+5}{2}$			M1A0	
	$6x + 15 - \frac{12x}{2} - \frac{60}{2}$ (implied by -15)			M1A0	
	-2x - 5			M0A0	
	6x + 15 + 24x + 60 (implied by $30x - 6x + 15 + 24x + 60$)	+ 75)		M1A0	

Q	Answer	Mark	Comments	
	18.9 ÷ 0.45 or 42	M1	oe	
	their 42 ÷ 7 × 8 or 48	M1dep	oe eg $\frac{8}{7}$ × their 42	
			or [1.14, 1.143] × their 42	
	0.45 ÷ 9 × 5 or 0.25	N/A	oe eg $\frac{5}{9}$ × 0.45 or [0.55, 0	.56] × 0.45
		M1	$\frac{8}{7} \times \frac{5}{9} \times 18.9$ oe scores M	3
	12	A1		
26	Additional Guidance			
	Up to M3 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts			
	Any single calculation or set of calculations that are a correct method and lead to 12			
	Note that the single calculation $\frac{8}{7} \times \frac{5}{9} \times 18.9$ does not use 0.45		does not use 0.45	M3
	An oe for $\frac{8}{7} \times \frac{5}{9} \times 18.9$ is $\frac{8}{7} \times \frac{18.9}{0.45} \times \frac{5}{9} \times 0.45$			М3
	Values may be seen in ratios eg 42 :	: 48		M1M1

Q	Answer	Mark	Comme	nt
	Alternative method 1			
	Sight of at least one of 2.35 or 2.45 or 2.85 or 2.95	M1	allow 2.449 for 2.45 and	1 2.949 for 2.95
	their 2.35 × their 2.85	M1	2.3 ≤ their 2.35 < 2.4 2.8 ≤ their 2.85 < 2.9	
	2.35 × 2.85 selected and 6.6(975)	A1	accept 6.7(0) or 6.698 with 2.35 × 2.85 selected	i
	Alternative method 2			
	Sight of at least one of 2.35 or 2.45 or 2.85 or 2.95	M1	allow 2.449 for 2.45 and	1 2.949 for 2.95
	6.51 ÷ their 2.35	M1	2.3 ≤ their 2.35 < 2.4	
	or		2.8 ≤ their 2.85 < 2.9	
	6.51 ÷ their 2.85			
	6.51 ÷ 2.35 and 2.7(7) and 2.85			
27	or	A1		
	6.51 ÷ 2.85			
	and 2.2(8) and 2.35			
	Additional Guidance			
	Alt 1 2.35×2.85 amongst other cal 2.35×2.95 can still score the secon are considering $2.35 \times 2.85 = 6.6(9.85)$ be rented	nd M1 but i	t must be clear that they	
	eg1 2.35 × 2.85 = 6.6975 2.45 × 2.95 = 7.2275			M1M1A0
	eg2 2.35 × 2.85 = 6.6975 2.45 × 2.95 = 7.2275			
	$2.35 \times 2.95 = 6.9325$ The lower bounds show it can be rented			M1M1A1
	Ignore the calculation 2.4 × 2.9 throughout			
	Alt 1 6.6(975) or 6.7 or 6.698 without 2.35 × 2.85 selected			A0
	6.6975 only			M0M0A0
	Alt 2 2.7(7) without 6.51 ÷ 2.35 and 2.85 seen		A0	
	Alt 2 2.2(8) without 6.51 ÷ 2.85 ar	nd 2.35 se	en	A0

Q	Answer	Mark	Comments
	interior angle = 150 or exterior angle = 30 or angle <i>BCN</i> = 120	B1	method not required may be seen on diagram
	interior angle = 150 with a valid method shown or exterior angle = 30 with a valid method shown or angle BCN = 120 with a valid method shown	B1dep	angles may be seen on diagram but methods will be in working lines eg $180 - \frac{360}{12} = 150$ or $\frac{1800}{12} = 150$ or $360 - 120 - 90 = 150$ or $\frac{360}{12} = 30$ or $\frac{180 - 120}{2} = 30$ or $180 - 150 = 30$ or $360 - 150 - 90 = 120$ or $360 - 240 = 120$ or $180 - 2 \times 30 = 120$
28	interior angle = 150 with a valid method shown and exterior angle = 30 with a valid method shown and angle BCN = 120 with a valid method shown	B1dep	angles may be seen on diagram but methods will be in working lines $eg \ \frac{1800}{12} = 150$ and $\frac{180 - 120}{2} = 30$ and $360 - 240 = 120$ angles worked out in any order
	Fully correct working that must show correct progression and show all valid methods Valid methods shown must be appropriate for the approach used A reason must be included in the final step	B1dep	examples of the final step are (i) angle <i>ABC</i> + angle <i>CBN</i> = 180 (ii) interior angle = 150 in two different ways (iii) exterior angle = 30 in two different ways (iv) angle <i>BCN</i> = 120 in two different ways (v) sum of three angles at <i>C</i> = 360 (vi) sum of angles of triangle <i>BCN</i> = 180

	Additional Guidance	
	Condone incorrect use of equals signs throughout eg interior angle = $12 - 2 = 10 \times 180 = 1800 \div 12 = 150$	B1B1
	interior angle may be seen as angle ABC or angle BCD exterior angle may be seen as angle CBN	
	It must be clear which angle they are working out eg1 Do not accept 150 if it is not correctly identified or not in the correct position on diagram eg2 Do accept 150 if it is identified as an interior angle or angle ABC or is in the correct position on the diagram	
	Do not accept incorrect statements eg1 exterior angle = 150 (even if 150 in correct position on the diagram) eg2 angle ACB = 150 (even if 150 in correct position on the diagram)	
	Ignore reasons for the first three marks	
28 cont	Angles on the diagram with no valid methods can score a maximum of B1B0B0B0	
	For the 2nd and 3rd marks the methods shown do not have to show progression	
	Example of fully correct working for (i)	
	interior angle = $\frac{1800}{12} = 150$	B1B1
	angle <i>BCN</i> = 360 – 150 – 90 = 120	
	angle $CBN = \frac{180 - 120}{2} = 30$	B1
	150 + 30 = 180 angles on a (straight) line	B1
	Example of fully correct working for (ii)	
	exterior angle = $\frac{360}{12}$ = 30	B1B1
	angle <i>BCN</i> = 180 − 2 × 30 = 120	
	interior angle = $360 - 120 - 90 = 150$	B1
	interior angle = $\frac{1800}{12}$ = 150 (interior) angle of polygon	B1

$(x-9)^2$				
	M1	allow $\left(x - \frac{18}{2}\right)^2 \dots$ may be implied by a grid for	$(x-9)^2$	
$(x-9)^2 - 9^2 + 70$ or $(x-9)^2 - 81 + 70$ or $(x-9)^2 - 11$	M1dep	oe completing the square $eg \left(x - \frac{18}{2}\right)^2 - \left(\frac{18}{2}\right)^2 + 70$		
(9, -11) with correct completing the square seen				
Ado	ditional G	uidance		
Allow $(x-9)^2$ to be $(9-x)^2$ throughout	ut			
Allow $(x - 9)^2$ to be $(x - 9)(x - 9)$ through	ughout			
Condone expression = 0 throughout				
$(x-9)^2 = 11$ with $(x-9)^2 - 11$ (= 0) also seen scores M1M1 Also scores A1 if answer correct				
$(x-9)^2 = 11$ without $(x-9)^2 - 11$ (= 0) also seen Answer correct would still mean M1M0 (or SC1)				
Allow as a slip if completing the square seen but the squared is omitted in a subsequent line				
eg $(x-9)^2 - 81 + 70 = (x-9) - 11$ Answer (9, -11)				
(x - 9) - 11 and answer (9, -11)	(x - 9) - 11 and answer (9, -11)			
(x - 9) - 11 and answer not (9, -11)				
(9, -11) with no method or from a different method eg calculus				
x x -9x	e of the p	roducts missing or incorrect	M1	
	or $(x-9)^2-81+70$ or $(x-9)^2-11$ $(9,-11)$ with correct completing the square seen Adding the square seen Adding $(x-9)^2$ to be $(9-x)^2$ throughout $(x-9)^2$ to be $(x-9)(x-9)$ throwing the condone expression = 0 throughout $(x-9)^2=11$ with $(x-9)^2-11$ (= 0). Also scores A1 if answer correct $(x-9)^2=11$ without $(x-9)^2-11$ (= Answer correct would still mean M1M. Allow as a slip if completing the square subsequent line eg $(x-9)^2-81+70=(x-9)-11$. Answer $(9,-11)$. $(x-9)-11$ and answer $(9,-11)$. $(x-9)-11$ and answer not $(9,-11)$. $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ when $(9,-11)$ with no method or from a difference of the condone and $(9,-11)$ when $(9,-11)$ and $(9,-11)$ when $(9,-$	or $(x-9)^2-81+70$ M1dep or $(x-9)^2-11$ (9, -11) with correct completing the square seen Additional G Allow $(x-9)^2$ to be $(9-x)^2$ throughout Allow $(x-9)^2$ to be $(x-9)(x-9)$ throughout Condone expression = 0 throughout $(x-9)^2=11$ with $(x-9)^2-11$ (= 0) also seen Also scores A1 if answer correct $(x-9)^2=11$ without $(x-9)^2-11$ (= 0) also seen Answer correct would still mean M1M0 (or SC1 Allow as a slip if completing the square seen by subsequent line eg $(x-9)^2-81+70=(x-9)-11$ Answer $(9,-11)$ $(x-9)-11$ and answer $(9,-11)$ $(y,-11)$ with no method or from a different method or from	or $(x-9)^2-81+70$ or $(x-9)^2-11$ $= g(x-\frac{18}{2})^2-\left(\frac{18}{2}\right)^2+70$ $= g(9,-11)$ with correct completing the square seen $= g(9,-11)$ with $(x-9)^2-9^2$ SC1 $(9,-11)$ with correct consquare not seen $= g(9,-11)$ with $= g(9,-11)$ with correct consquare not seen $= g(9,-11)$ with $= g(9,-11)$ with correct consquare not seen $= g(9,-11)$ with correct consquare not seen $= g(9,-11)$ with $= g(9,-11)$ with correct consquare not seen $= g(9,-11)$ with $= g(9,-11)$ w	